

Beam Energy Scan on Hypertriton Production and Lifetime Measurement

Yuhui Zhu^{1,2}

Brookhaven National Lab, USA
 Shanghai Institute of Applied Physics, CAS, China

STAR

Outline

- **★** Introduction and Motivation
- **★** Analysis Details
- $\star \Lambda^{3}$ H Production at $\sqrt{S_{NN}} = 7.7,11.5,19.6,27,39,200$ GeV
- **★** BES-I Projection on Energy Dependence of Strangeness Population Factor
- ★ BES-I Projection on Hypertriton Lifetime
- ★ Conclusions and QM2012 Plan

Hypernucleus

Hypernucleus: Nucleus which contains at least one hyperon in addition to nucleons.

Hyperon-Nucleon (Y-N) Interaction

Helps to understand strong interactions Helps to study neutron stars

Binding energy and lifetime are sensitive to Y-N interactions

M. Danysz and J. Pniewski, Phil. Mag. 44 (1953) 348

Hypernucleus of Lowest A

 $^{3}_{\Lambda}$ H(p+n+ Λ)(Hypertriton) $^{3}_{\overline{\Lambda}}$ H(\overline{p} + \overline{n} + $\overline{\Lambda}$)(Antihypertriton)

Easiest to be produced in HIC

STAR Collaboration, SCIENCE 328, 58 (2010)

Hints on QCD Phase Transition

Strangeness Population Factor

$$S_3 = {}_{\Lambda}^3 H/({}^3 He \times \Lambda/p)$$

It is predicted that the beam energy dependence of S3 would behave differently in pure hadron gas and QGP.

Previous Lifetime Measurement

STAR Collaboration, SCIENCE 328, 58 (2010)

STAR Latest Measurement

Run4 200GeV minbias 22M Run4 200GeV central 23M Run7 200GeV minbias 68M

How much do we have now?

Run10 200GeV minbias ~220M Run10 200GeV central ~180M Run11 200GeV minbias ~580M Low Energies minbias ~212M

It is promising to obtain an improved lifetime measurement result using present datasets.

Relativistic Heavy Ion Collider(RHIC)

Au+Au: Top 200GeV, BES I(from 7.7 to 39GeV)

p+p: Top 500GeV, 200GeV

STAR Detector

Particle Identification

Time Projection Chamber

 $(0<\phi<2\pi, |\eta|<1)$ Tracking – momentum Ionization energy loss – dE/dx

Datasets and Analysis Method

★ Datasets

Datasets Used									
Run10 7.7GeV	minbias	3.98M							
Run10 11.5GeV	minbias	10.98M							
Run11 19.6GeV	minbias	31.15M							
Run11 27GeV	minbias	48.65M							
Run10 39GeV	minbias	118.02M							
Run10 200GeV	minbias	222.73M							
Run10 200GeV	central	199.07M							
Run7 200GeV	minbias	56.31M							

★Analysis Method: Secondary Vertex Finding Technique

- ★ Find helium-3 and pion helices
- ★ Analyze each possible helium-3 and pion pair and give appropriate V0 cuts
- ★ Plot the invariant mass spectra

Secondary vertex finding technique

$$^{3}He \rightarrow ^{3}He + \pi^{-}$$
 $\overrightarrow{P_{0}} = \overrightarrow{P_{1}} + \overrightarrow{P_{2}}$
 $\overrightarrow{P_{2}}$
 $\overrightarrow{P_{$

Daughter Identification

	Run10 7.7	Run10 11.5	Run11 19.6	Run11 27	Run10 39	Run10 200(minbias)	Run10 200(central)	Run7 200 minbias
3 He	8587	7161	6321	5312	6456	5822	11181	2264
$^{3}\overline{He}$	0	0	0	19	133	2213	4241	861

$$|n\sigma_{\pi}| < 2$$

Statistics: Run7+Run10+Run11 minbias+central, totally 609.89M events

Background Estimation: Rotated background fit Signal: Bin-bin counting in a fixed mass range: [2.986, 2.996] GeV

 $_{\Lambda}^{3}\text{H} + _{\overline{\Lambda}}^{3}\overline{\text{H}}$ produced: 601.9 ± 63.2 significance: 9.5 σ

³H Production

$${}_{\Lambda}^{3}\text{H} + {}_{\overline{\Lambda}}^{3}\overline{\text{H}}$$
 produced at $\sqrt{S_{NN}} = 7.7,11.5,19.6,27,39,200 \text{GeV}$

STAR BES-I Projection on S3

To get a statistically satisfying S3 result, we need about 10 times more statistics for each energy

STAR BES-I Projection on Lifetime

A statistically improved lifetime is expected

Conclusions and QM2012 Plan

- ★ Over 600 ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}$ H are reconstructed with significance 9.5 σ
- \star $^{3}_{\Lambda}$ H and $^{3}_{\overline{\Lambda}}$ H signal at separate energies is reconstructed

Results to be presented at QM2012:

- ★ Preliminary ³₁H and ³He spectra
- ★ Preliminary beam energy dependence of strangeness population factor
- ★ A statistically improved lifetime

Thanks!